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Abstract—This study explores the seasonal variations in wild-
fire prediction by analyzing the importance of different features
like temperature, wind speed, and the Normalized Difference
Vegetation Index (NDVI). Employing machine learning and deep
learning techniques, the research identifies key seasonal factors
that influence wildfire occurrences. The findings aim to enhance
the precision of wildfire prediction models and advocate for
adaptable, season-specific management strategies. This approach
has significant implications for effective wildfire risk mitigation,
leveraging the potential of remote sensing and advanced compu-
tational models in environmental studies.

Index Terms—Machine Learning, Deep Learning, Wildfire
Prediction, Seasonal Variability, Feature Importance Analysis,
Environmental Risk Management, Data Analysis in Environmen-
tal Science

I. INTRODUCTION

The increasing frequency and severity of wildfires globally,
and particularly in Canada, underscore the urgent need for
improved detection, prediction, and management strategies.

Table 1 provides an overview of the scale and impact of
wildfires in Canada and Globally:

Metric Canada Global
Average annual
number of wildfires

7,000 [30] Over 300,000 [14]

Area burned annually
(hectares)

Over 2.5 million [30] Approximately 350
million [13]

Economic Impact
(Annually)

CAD 1 billion [9] USD 100 billion [41]

Number of fatalities
(Annually)

Varies, but can be
significant especially
in bad seasons

Approximately
340,000 [39]

Impact on air quality Significant, especially
in populated areas
affected by wildfire
smoke [12]

Significant in many
parts of the world,
especially in regions
with frequent
wildfires [29]

TABLE I
IMPACT OF WILDFIRES IN CANADA AND GLOBALLY

According to a study conducted by Henderson et al., [17],
even short-term exposure to wildfire smoke can exacerbate
asthma and other respiratory conditions and has been linked to
increased hospital admissions for respiratory issues. Children,
the elderly, and people who have breathing problems are even
more vulnerable under this circumstance. Wildfires not only

affect forests, and homes but also our daily health and well-
being.

Moreover, wildfires present a considerable risk to global
forests and ecosystems, resulting in substantial ecological and
economic damage. In the context of climate change, increasing
global temperatures, and rising CO2 emissions, accurately
predicting and understanding wildfires is crucial for reducing
ecological and socio-economic impacts.

Wildfire occurrence is considered influenced by four main
factors: weather or climate, fuels, ignition agents, and humans
[16]. Of all these factors, most existing research focuses on en-
vironmental and anthropogenic aspects due to the availability
of relevant data. This paper concentrates on identifying key
features that significantly contribute to wildfire occurrences
across different seasons. By pinpointing these critical factors,
we aim to enhance wildfire prediction accuracy and inform
more effective management strategies. The research specifi-
cally examines the variances in feature importance seasonally,
offering insights into tailored wildfire prevention measures for
each season.

Our study is driven by the objective to identify and analyze
the seasonal variance in key features influencing wildfire oc-
currences. This insight is vital for tailoring prediction models
to different seasonal dynamics. By clarifying the seasonal
impact on key factors, we address the research question: ’How
do specific features influence wildfire occurrences in various
seasons, and how can this knowledge enhance prediction and
management strategies?’ This approach offers a refined per-
spective on wildfire prediction, moving beyond the common
summer-centric view to include spring and fall.

Our findings will not only be invaluable for the academic
community but also for forest management authorities, poli-
cymakers, and emergency response teams. For example, forest
management authorities can develop season-tailored strate-
gies. Policymakers can design policies to allocate resources
more efficiently during high-risk seasons. Emergency response
teams can prepare for wildfire outbreaks on seasonally relevant
predictors.

This paper focuses on feature importance differences in
wildfire prediction. We start with an introduction to the
severity of wildfires in the world. Then we look at previous re-
search works in wildfire prediction. Afterward, we explain our



research scope, methodology, and metrics. Then we present
the result according to the metrics. In the end, we discuss our
limitations and future work.

II. RELATED WORKS

A. Data Collection

Most research includes natural predictors, which can be
divided further into climatic, topographic, and land cover.
Some research also includes anthropogenic factors which may
include unemployment rate [31], proximity to urban and roads.
As for climatic factors, most research considers temperature,
precipitation, wind speed and direction, soil moisture and
humidity. As for topographic factors, slope and aspect [31]
[27] [22] are shared by most research predictors. Land cover
as the fuel to wildfire is widely adopted in existing research.
These factors can be retrieved directly from satellite maps.
Anthropogenic factors are considered less frequently than
environmental ones, given that the data can be harder to
define and process. However, it is found that both lighting
and human-caused fires occur with greater probability when
closer to roads and populated places in Canada [16].

More specifically, V. L. S. Arruda et al. [3] use the Deep
Neural Network (DNN) model for detecting and mapping
burned areas in the Cerrado biome in Brazil. The input
variable this paper uses includes Google Earth Engine data,
such as NDVI (Normalized Difference Vegetation Index),
NBR (Normalized Burn Ratio), and delta NBR (Difference
Normalized Burned Index). The output variable of this paper
is Landsat spectral bands. G. Charizanos and H. Demirhan
[10] use NDVI, humidity, highest temperature, and mean wind
speed as the predictor. S. Tavakkoli Piralilou et al [21] use
remote sensing data at different spatial resolutions, such as
Landsat 8, Sentinel-2, ALOS, and SRTM datasets. The output
data of this study are the wildfire susceptibility prediction
(WSP) maps. These maps indicate the areas at risk of wildfires
in the Guilan Province, Iran.

B. Methods

There are two mainstream machine learning methods used
to predict wildfire occurrences: classical Machine Learning
algorithms [31] [27] [37] [21] [33] and Deep Neural Networks
[22] [43]. Classical Machine Learning algorithms have the
advantage of easy interpretation and are mostly used on tabular
data and small datasets, while Deep Neural Network is usually
much more complex and considered a ”black box”, in the
meanwhile is versatile enough to handle all kinds of data and
large datasets.

1) Classical Machine Learning Methods: Some research
papers used classical Machine Learning algorithms such as
Random Forest and SVM. S. Tavakkoli Piralilou et al [21]
employ machine learning algorithms such as artificial neural
network (ANN), support vector machines (SVM), and random
forest (RF) to train and test the models. This paper ad-
dresses the class imbalance in wildfire susceptibility prediction
by using the Synthetic Minority Over-sampling Technique
(SMOTE) algorithm. SMOTE is used to generate synthetic

samples of the minority class (i.e., wildfire locations) to
balance the class distribution and improve the performance
of the machine learning models.

Another recent research discovered fire susceptibility us-
ing ML methods and the Google Earth Engine dataset in
Gangwon-do, Korea [33]. The authors constructed forest fire
susceptibility mapping using classification and regression trees
(CART), boosted regression trees (BRTs), and random forest
(RF) algorithms. The evaluation metrics used in this paper
is ROC and AUC. Input data is the distance to urban areas,
rainfall amount, annual average temperature, drain density,
normalized difference vegetation index (NDVI), topographic
wetness index, aspect, slope, distance to rivers, distance to
roads, and elevation. Output data is forest fire susceptibility
maps (FFSMs). This paper also emphasizes the importance of
human factors in wildfires.

2) Deep Neural Networks(DNN): Besides image segmen-
tation methods for wildfire prediction, there were also papers
using image classification methods for detection, e.g. using
CNN-based models, such as YOLO, as well as vision trans-
formers(VIT).

Furthermore, a deep learning approach for early wildfire
detection from hyperspectral satellite imagery, although not
fully extracted, suggests a focus on advanced machine learning
techniques for wildfire detection using sophisticated satellite
data [28].

While existing studies have explored various wildfire pre-
dictors, there is a notable gap in understanding which of
these plays a more crucial role across different seasons. Our
research seeks to fill this gap by analyzing and comparing
the significance of various features in predicting wildfires
seasonally. This understanding is vital for developing season-
specific wildfire management and prediction models

As for the metrics to evaluate the model performance,
no matter which Machine Learning method they used, most
research mentioned recall, F1 Score, accuracy, and specificity.

C. Challenges

One of the challenges that most research mentioned is the
imbalanced nature of wildfire datasets. Various methodologies
are applied under certain circumstances to address this issue,
such as oversampling and class weights.

D. Research Gap

Recent advancements in machine learning and deep learning
have significantly good results in wildfire prediction. Despite
these developments, focus on how the relevance of predictors
changes with seasons lacks.

Our research aims to bridge this gap by investigating how
different predictors’ effectiveness varies across seasons. We
plan to use different models for seasonal analysis, such as
Machine Learning and Deep Learning techniques. Addition-
ally, we seek to explore the year-to-year variance in predictor
relevance.



III. DATA SOURCE AND WORKFLOW

A. Data Source

We collected all data from Google Earth Engine (GEE)
since it is more readily accessible than downloading data
from different websites. However, the limitation of using GEE
is that some data isn’t listed in its catalogue. All available
features are listed in fig. 3. Based on what we learned from
the literature review, we put our features into these categories:
climate, topography and vegetation.

Fig. 1. Available features

B. Workflow

Our workflow can be summarized with fig. 2. We will
describe the details of of the first two stages in this section. The
rest of the stages will be addressed in the following sections.

Fig. 2. Workflow overview

Data Processing
• Unify temporal resolutions The data maps we collected

from GEE have different temporal resolutions while what
we need is monthly data. So we made the temporal
resolution for sampling monthly.

• Convert label data to class We defined our problem
as a classification problem. What we directly sampled
from GEE are float numbers. So what we did is to select
a threshold value. All values below it are put into ’no
fire’ class and those greater or equal to it are ’fire’ class.
The threshold value is Kelvin Temperature and we chose
300K as the boundary.

• Normalize input features Some of the models we exper-
imented with are feature-scaling sensitive models, such as
DNN models. We normalized each of the input features
with a fixed range. The selection of ranges is based on the
observation of value distribution in the region of interest.

Startified Sample

Wildfire problem is known to suffer from the imbalance
issue. This is because fire pixels are sparsely distributed and
occupy a much smaller portion on the map compared to no-
fire pixels. We handled this issue with ’stratifiedSample’ API
of GEE. In this way, we ensured the two classes are equal
in amount so that our model is trained on a diverse and
representative dataset.

C. Metrics

1) Recall: Given the high threat of wildfires, we will use
the recall (true positive rate) as an evaluation metric. Recall
measures the model’s ability to correctly identify actual posi-
tive instances, which is identifying the occurrence of wildfires.
Recall is important in cases where missing actual wildfire
occurrences (false negatives) can have severe consequences.
Minimizing false negative cases can help policymakers better
understand the occurrence of wildfire and prevent it.

The formula for recall is given by:

Recall =
True Positives (TP)

True Positives (TP) + False Negatives (FN)

Where:
- True Positives (TP) represents the number of correctly

predicted wildfires. False Negatives (FN) represents the num-
ber of actual wildfires that were not predicted by the model.

2) F1 Score: The F1 score combines both precision and
recall into a single metric.

The formula for F1 Score is given by:

F1 Score =
Precision ∗ Recall
Precision + Recall

3) Validation Strategy: Our research will be validated using
rigorous cross-validation techniques to ensure the reliability
and applicability of our findings. The 5-fold cross-validation
technique will be used to ensure that each fold is a good
representation of the entire dataset given that the dataset itself
is imbalanced. (Will dive deeper once finish analyzing our
dataset using different algorithms, To be continued) Perfor-
mance metrics such as recall, precision, F1 score, and area
under the ROC curve will be used to evaluate the model’s
predictive capabilities.

D. Challenges

The challenges we anticipate are span data collection, model
training, and validation.

1) Data Collection: Due to the limited amount of maps on
the GEE platform, we have to abandon predictors that are not
accessible on GEE, such as road density and unemployment
rate, etc. We also need to try filtering data that is temporally
overlapped especially for factors that can change dramatically
over time.

2) Imbalanced Data: Wildfire occurrences, when compared
to non-occurrences, present an imbalanced dataset. This im-
balance can bias the models towards predicting the majority
class, leading to reduced sensitivity in detecting actual wildfire
events.



IV. ALGORITHM

In this section, we will discuss the fundamental principles
behind the feature importance analysis. Then each of us will
describe our choice of models.

1) Feature Importance Analysis: Permutation feature im-
portance is defined to be the decrease in a model score when a
single feature value is randomly shuffled [25]. The idea behind
this method is, that the more important a feature is, the larger
impact it has on the result. Shuffling such features will break
the link between features and labels, thus causing errors to
increase.

The steps of my analysis can be described as below:
• Calculate the error between prediction and actual labels

as baseline error.
• For each input feature, shuffle all test records of it and

maintain the correct order for other features.
• Predict with shuffled test data and measure the error after

the shuffling.
• Sort the error from large to small, then we get the order

of each feature’s importance.

A. Justin

XGBoost: XGBoost, also known as Extreme Gradient
Boosting, is a powerful ensemble learning algorithm with
exceptional performance in classification and regression tasks.
Developed by Tianqi Chen and Carlos Guestrin [?]. XGBoost
creates an ensemble of decision trees, excellent at both clas-
sification and regression tasks, making it an ideal choice for
our wildfire prediction model.

The key components and benefits of XGBoost include:
• Gradient Boosting: XGBoost is based on the concept of

gradient boosting, which sequentially builds an ensemble
of decision trees, each correcting the errors made by the
previous ones.

• Regularization: XGBoost uses L1 (Lasso) and L2
(Ridge) regularization techniques to prevent overfitting.

• Tree Pruning: XGBoost uses tree pruning to control the
depth of individual trees, preventing excessive branching
and reducing overfitting.

I use XGBoost to train a binary classification model that dis-
tinguishes between wildfire occurrences and non-occurrences
based on a variety of features we pre-defined for all 3 seassons,
for 3 years from 2019 to 2022. With preprocessing pipelines
specified in section III.B workflow, we make sure dataset is
balanced, and then use model.feature importance API from
xgboost library to perform feature importance analysis and
plot the visualized results for better understanding.

Kernel SVM, LSTM, KNN, TabNet, Logistic Regression,
Naive Bayes, 1D-CNN: Alongside XGBoost, I also explore
various models for wildfire prediction. Kernel SVM leverages
support vector machines with kernel tricks for classification.
LSTM, as shwon in 5, is a type of recurrent neural network,
captures temporal dependencies is first invented by Hochreiter
and Schmidhuber [18]. KNN utilizes nearest neighbors for
classification. TabNet [2] employs attention mechanisms for

tabular data as shown in 3, which is first invented by Vaswani
et al [38]. The architecture can be show in 4 .Logistic Re-
gression and Naive Bayes offer simpler probabilistic models.
1D-CNN applies convolutional layers for feature extraction
from sequential data.

Fig. 3. Attention is All you Need

Fig. 4. TabNet Architecture

Fig. 5. LSTM

In our wildfire prediction task, each model is trained and
evaluated based on predefined features across multiple sea-
sons and years. We balance the dataset using preprocessing



pipelines and conduct feature importance analysis, visualizing
the results for comprehensive insights.

1) Randomized Search: I use Randomized Search Cross-
Validation(CV) proposed by J. Bergstra and Y. Bengio in
2012, which is considered more efficient than Grid Search with
Cross-Validation for hyperparameter tuning [?]. Randomized
Search explores a random set of hyperparameter combinations
within defined ranges, which can find optimal hyperparameters
more efficiently. This approach is particularly advantageous
when there is a large search space and limited computational
resources. While training wildfire prediction models, Random-
ized Search allows us to efficiently discover hyperparameters
that yield the best results without exhaustive computation.

2) Feature Importance Analysis by Season: Feature impor-
tance analysis is a crucial step in understanding the predictive
power of the features in our model. It helps us identify which
features contribute most to the model’s prediction decision,
this can provide valuable insights into the factors that are most
influential in predicting wildfire occurrences.

In XGBoost, feature importance is calculated as the average
gain of the feature when it is used in trees. Here are the steps
we follow for feature importance analysis:

Train the model: We first train our XGBoost model using
the optimal hyperparameters obtained from the Randomized
Search.

Calculate feature importance: We then use the
model.feature importance API from the xgboost library
to calculate the importance of each feature. This gives us a
score for each feature in our dataset, indicating how useful or
valuable each feature was in the construction of the boosted
decision trees within the model.

Visualize the results: To better understand and interpret the
feature importance, we plot the scores in a bar chart. The
y-axis represents the features, and the x-axis represents the
importance scores. Features are sorted by their scores, allowing
us to easily identify which features are most important in our
model.

Interpret the results: The higher the score, the more im-
portant the feature is. Features with low scores may not be
necessary for our model and could potentially be dropped to
simplify our model.

B. Mia

1) Artificial Neural Networks: Artificial Neural Networks
(ANN) based on convolutions, recurrent mechanisms, or
transformers seem to outperform traditional machine learning
models in a multitude of domains. However, they still face
challenges when tackling tabular data [6]. It remains unclear
why they cannot achieve the same level of predictive quality
as in computer vision or natural language processing, and
they even cannot compete with traditional methods, especially
ensemble methods such as XGBoost or random forest. The
hypothesis focuses on the differences between tabular data
and image or language data, including heterogeneous traits
in tabular data compared to homogeneous data (image, text,
or audio) and the weaker feature correlation of tabular data

than the spatial or semantic relationships exhibited in image
or speech data. Hence A.Kadra et al. [1] called tabular datasets
the “last unconquered castle” for ANN models.

In my experiment, I designed a baseline ANN model with 2
hidden layers and a deeper ANN model with 5 hidden layers,
batch normalization layers, and dropout layers. Fig. 6 shows
the structure of the deeper ANN model. This feed-forward unit
is common in ANN architecture and general enough for most
problems.

Fig. 6. Deeper ANN Architecture

2) FT-Transformer: Recently, Transformer, believed to be
the state-of-the-art deep architecture, has shown comparative
performance on tabular data problems [6] [19] [20] [24]
[35]. Yury et al. designed FT-Tranformer and proved that it
can outperform the traditionally dominant gradient-boosted
decision trees (GBDT) methods in some tabular problems [42].
I used an implementation of FT-Transformer using TensorFlow
from https://github.com/aruberts/TabTransformerTF and mod-
ified it to make sure the architecture is consistent with that
in the original paper. Fig. 7 demonstrates an overview of the
architecture of FT-Transformer and fig. 8 shows the structure
of the transformer block.

Fig. 7. FT-Transformer Architecture

As stated in the original paper, FT-Transformer uses pre-
normalization, which differs from post-normalization in that
the input will be added with the output of multi-head self-
attention (MHSA) directly without normalization. Another
detail worth noting is that the first Transformer layer will
skip the first normalization given that the experiment results
conducted by the original authors showed that this could
improve the performance of FT-Transformer significantly.

The feature importance of FT-Transformer is different from
the permutation method mentioned at the beginning of this
section. Transformer architecture uses an attention mechanism
and the attention maps are used for evaluating feature impor-
tance. To make sure this method is consistent with the results
derived from more general analysis methods, the original paper
used permutation tests (PT) and got consistent rank order
results. In this way I make sure the different feature importance

https://github.com/aruberts/TabTransformerTF


Fig. 8. Transformer Block in FT-Transformer

analysis method won’t impact the result so that the result from
FT-Transformer is comparable with other models that use PT.

3) Fine-tuning: As for fine-tuning, my focus is on tuning
the model architecture as well as the training process. Even
though the ANN models and FT-Transformer have quite
different structures and thus have different hyperparameters,
the tuning principles behind them are the same. All the
hyperparameters can be categorized as

• Regularization dropout rate, batch normalization, early
stop, etc.

• Architecture layer number, units, and activation function.
• Training process epoch number, batch size, learning rate.

C. Huizi

1) Random Forest: Random Forest (RF) as we can see
in Fig. 9 is an ensemble-based method that builds upon
the foundational principles of decision trees. By introducing
randomness at multiple stages, RF ensures diversity among
its constituent trees, thereby enhancing overall prediction
accuracy [7]. The ensemble approach ensures that the in-
dividual biases and potential errors of constituent trees are
averaged out, leading to a model with enhanced robustness
and generalizability.

This method operates by constructing multiple decision
trees during training and outputting the class that is the mode
of the classes (classification) or mean prediction (regression)
of the individual trees. A key concept in Random Forest is
’bagging’ or bootstrap aggregating, which helps in reducing
variance and avoiding overfitting. Mathematically, if we have
N trees and Yi(x) is the prediction of the ith tree, the final
output is given by

Y (x) =
1

N

N∑
i=1

Yi(x)

2) Key Components and Benefits:
• Ensemble of Decision Trees: RF creates a collective of

decision trees, where each tree’s errors are corrected by
subsequent trees.

• Bagging or Bootstrap Aggregating: This technique
reduces variance and enhances model robustness against
overfitting by randomly sampling data points with re-
placement for tree construction.

• Tree Pruning and Depth Control: RF regulates tree
depth to avoid excessive branching, ensuring a balanced
model complexity.

Fig. 9. Random Forest Architecture

3) Implementation in Wildfire Prediction: RF is used to dif-
ferentiate between wildfire occurrences and non-occurrences,
considering various seasonal features from 2019 to 2022.

• Data Preprocessing: The dataset is preprocessed for bal-
ance and consistency, involving steps like normalization,
handling missing values, and categorical data encoding,
as detailed in Section III.B.

• Feature Importance Analysis: Utilizing the
model.feature_importance attribute from
the RF library, feature importance is calculated and
visualized for insightful interpretations.

4) Hyperparameter Tuning: For hyperparameter tuning,
Randomized Search CV is employed to efficiently explore
various hyperparameter combinations, enhancing model per-
formance while managing computational resources.

• Number of Trees (n estimators): This parameter deter-
mines the number of decision trees. A higher number
often results in better performance but at the cost of
computational time. [34]

• Maximum Depth of Trees (max depth): It affects
the depth of individual trees, influencing the model’s
complexity and its ability to capture intricate patterns [26]

• Minimum Samples for Split (min samples split): A
critical parameter that affects the decision of when a node
should split, with implications for model granularity.

• Bootstrap Sampling: Employs a sampling technique,
where data points are sampled with or without replace-



ment. This introduces variability among trees, a corner-
stone for RF’s ensemble nature [7]

5) Feature Importance: An essential step in understanding
the predictive power of different features. In RF, importance is
gauged by the frequency and depth of a feature’s use across all
trees. Visualization of feature importance is done through bar
charts, helping identify key predictors in wildfire occurrences.

6) Model Architecture: RF was chosen for its effectiveness
in handling large, complex datasets, and its robustness against
overfitting. Its ensemble nature allows for a comprehensive
analysis of various factors influencing wildfires.

V. SIMULATION PLAN

A. Build Dataset

To investigate how different predictors’ effectiveness varies
across seasons, we define Spring as March to May (3-5),
Summer as June to September (6-9) and Fall as October to
December (10-12). We sampled 400 points each month for
every season across Canada from 2018 to 2021. Among the
samples, we selected samples from 2018 to 2020 as training
and validation dataset, and samples from 2021 as test dataset.
We split training and validation dataset with ratio 4:1.

To summarize, see the description below:
• Training dataset: From 2018 to 2020, with 5760 samples

for each season.
• Validation dataset: From 2018 to 2020, with 1440

samples for each season.
• Test dataset: In 2021, with 2400 samples for each

season.

B. Choose Model Parameters

1) Mia: As mentioned before, I trained 3 kinds of models:
baseline DNN, deeper DNN and FT-Transformer. I fine-tuned
both deeper DNN and FT-Transformer with the objective of
maximizing both accuracy and recall metrics. The tuner library
I used is KerasTuner [23].

For both baseline DNN and deeper DNN, the preliminary
training takes 10 epochs. The tuning for deeper DNN takes
10 epochs and 10 trials with hyperparameters including unit
number, layer number, activation function, dropout rate and
learning rate.

For FT-Transformer, the preliminary training takes 200
epochs with early stopping callback that monitors the vali-
dation accuracy. According to the training curve plotted, the
model converged at around 10 to 20 epochs. So I set 20 epochs
and 30 trials for tuning.

2) Justin: While tuning hyperparameter and analyze feature
importance, For each season, the following steps is performed:

Preprocessing: Convert the categorical variable ‘labels’ into
dummy/indicator variables, for both the training and evaluation
dataframes. We then separate the features (X) and the target
variable (Y) for both datasets.

Model Initialization: Initialize an classifier model.
Hyperparameter Tuning: Perform Randomized Search

Cross-Validation with 10 iterations and 3-fold cross-validation.

The scoring metric used is ‘accuracy’. The best model from
the randomized search is then stored in best model list.

Model Training: train the XGBoost model on the training
dataset.

Model Evaluation: Use the trained model to make predic-
tions on the evaluation dataset. I then calculate the accuracy
and recall of the model, and print these metrics. I also compute
and print the confusion matrix.

Feature Importance: Calculate the feature importance using
the feature importances attribute of the model.

This process is repeated for each season’s data. At the end
of the simulation, we have a list of the best models for each
season and a dictionary containing the feature importance
for each model. These can be used for further analysis and
interpretation.

XGBoost: A randomized search was conducted for the
XGBoost model with parameters including n_estimators,
max_depth, and learning_rate. Three different values
for each parameter were tested through 10 iterations and 3-
fold cross-validation per seasonal dataset. The best model
configurations, chosen based on accuracy, were saved for
future use.

Kernel SVM: The Kernel SVM model underwent training
with parameters such as C, kernel, gamma, and degree.
A randomized search was conducted using 10 iterations and
3-fold cross-validation per seasonal dataset to determine the
optimal hyperparameters. The best models, selected based on
accuracy, were saved for subsequent analysis.

LSTM: The LSTM model’s hyperparameters, includ-
ing hidden_units, lstm_layers, dense_units, and
dropout_rate, were optimized through random search.
Each model was trained for 10 epochs with a batch size of 32.
The best-performing LSTM models across different seasons
were stored for further analysis.

KNN: Utilizing the K-Nearest Neighbors algorithm, a
randomized search was conducted for parameters such as
n_neighbors, weights, and p. This search included 10
iterations and 5-fold cross-validation per seasonal dataset to
optimize accuracy. The best models, identified through this
process, were saved for future use.

TabNet: The TabNet model, as shown in 4, used a random-
ized search for parameters including n_d, n_a, n_steps,
gamma, and n_independent, 5-Fold cross-validation to
employed to evaluate each model’s accuracy. The best models,
selected based on performance, were saved for further exam-
ination.

1D-CNN, Logistic Regression, Naive Bayes: Similar pro-
cedures were followed for the 1D-CNN, Logistic Regression,
and Naive Bayes models. Each model have list of specific
parameter tuning and cross-validation techniques to identify
the best configurations based on accuracy for each season’s
dataset.

3) Huizi: Random Forest algorithm simulation plan.
Objective: To improve the accuracy and reliability of wild-

fire predictions across different seasons using the Random
Forest algorithm.



Data Preparation and Sampling: Gather and label seasonal
data over multiple years, preparing separate datasets for
Spring, Summer, and Fall.

Model Training and Hyperparameter Tuning: Train the
Random Forest model on each seasonal dataset. Optimize hy-
perparameters using RandomizedSearchCV to enhance model
performance for each specific season.

Cross-Validation and Feature Importance Analysis: Imple-
ment cross-validation for model stability and generalizability.
Conduct feature importance analysis to identify key predictors
for each season.

Performance Evaluation: Evaluate the model’s performance
using Precision, Recall, and F1-Score. Employ confusion
matrices for detailed analysis and to understand the model’s
predictive capabilities in different seasonal contexts.

Parameter Comparison: Compare the performance of mod-
els with default settings against those with optimized param-
eters, emphasizing improvements achieved through tuning.

Outcome Compilation: Repeat the process for each season’s
data. Compile the best-performing models for each season
and create a dictionary outlining feature importance for each
model.

Expected Outcomes: Enhanced predictive accuracy across
various seasons, with insights into the most significant pre-
dictors for different seasonal contexts. Overall improvement
in the model’s robustness and adaptability, leading to more
effective wildfire prediction and management strategies

VI. RESULTS

A. Model Selection

1) training and evaluation: Figure 11 and 10 illustrates
the recall and accuracy for validation across seasons for
various models. For Spring, we choose finetuned Artificial
Neural Network have high recall(0.95), with accuracy(0.75).
For Summer, we choose Random Forest for its consistent high
accuracy and recall(0.86). For Fall, we choose XGBoost for
its consistent high accuracy and recall(0.89).

Fig. 10. Accuracy across Seasons for Different Models

Fig. 11. Recall across Seasons for Different Models

B. Feature Importance Analysis

1) Spring: As we can see in 12, the most important feature
for Spring is Land Surface Temperature. This finding aligns
with our understanding of wildfires, where temperature plays
a importance role in influencing vegetation flammability and
fire spread.

Fig. 12. Feature Importance Results for Spring

2) Summer: The top3 importance feature for summer wild-
fire prediction are temperature, wind speed, and elevation
13. High temperatures contribute to the drying of vegetation,
making it more susceptible to ignition. In hot conditions,
the moisture content in plants decreases, creating favorable
conditions for the rapid spread of wildfires. Strong winds
can carry embers over long distances, potentially igniting new
fires. Wind also influences the speed at which a fire spreads
through vegetation. Additionally, different elevations may have
varying vegetation types, each with its own fire behavior
characteristics.



Fig. 13. Feature Importance Results for Summer

3) Fall: As in 14, the top 3 important feature for Fall is
elevation, temperature and Normalized Difference Vegetation
Index(NDVI). During the Fall season, elevation plays a crucial
role in influencing temperature, humidity, and atmospheric
conditions. Higher elevations tend to have cooler temperatures,
which can affect vegetation and wildfire behavior. Lower
NDVI values may indicate decreased vegetation cover and
increased vulnerability to wildfires.

Fig. 14. Feature Importance Results for Fall

4) Feature Analysis: The feature analysis across the three
seasons provides insights for key factors influencing wildfire
predictions. In Spring, Land Surface Temperature emerges
as the most critical feature, aligning with the understanding
of how temperature impacts vegetation flammability and fire
spread.

Moving into Summer, temperature, wind speed, and eleva-
tion stand out as the top three influential factors. The combina-
tion of high temperatures, strong winds, and varying elevations
contributes to conditions for rapid wildfire propagation.

In Fall, top features are elevation, temperature, and Nor-
malized Difference Vegetation Index (NDVI). Lower NDVI
values indicate decreased vegetation cover and heightened
vulnerability to wildfires.

VII. LIMITATION AND FUTURE WORK

There are several limitations in our work:

• Lack certain features In some literature for wildfire
prediction, researchers found that anthropological factors
also play an important role in accurately predicting wild-
fire occurrences. We didn’t include such features because
they are inaccessible from GEE.

• Lack of exploration for seasonal performance dif-
ferences For certain models, the performance can vary
significantly across the three seasons. We didn’t find
enough information that can explain the differences. More
training data may be needed to ensure the models can
learn enough patterns for the poorly-performed seasons.

In the future, besides including more possibly relevant
features in our study, and increasing training data to address
the limitations above, we will focus on improving our results
and potential for applications with the following experiments:

• Excluding less important features A potential future re-
search direction is conducting experiments where features
with low importance are excluded.

• Exploring beyond the default architectures In this
study, we borrowed models from existing research with-
out applying any changes to the architectures. For ex-
ample, in FT-Transformer, there are other options to
embed the numeric features other than the piecewise
linear method we used, such as periodic encoding.

• Application Getting decent results is just the first step.
What makes the results meaningful is figuring out what
we can do in wildfire management. To achieve this goal,
more studies will be needed outside the realm of machine
learning.

VIII. CONCLUSION

In conclusion, our study has elucidated the dynamic na-
ture of wildfire predictability across different seasons. We
demonstrated that factors such as the Digital Elevation Model
(CDEM) and Normalized Difference Vegetation Index (NDVI)
hold varying degrees of importance depending on the sea-
son, which underscores the complexity of wildfire prediction.
Spring’s susceptibility to wildfires is largely dictated by Land
Surface Temperature, while summer’s risk is heightened by
a trio of temperature, wind speed, and elevation. Come fall,
elevation, temperature, and NDVI values, become more sig-
nificant. Our research faces limitations due to data constraints,
notably the exclusion of certain variables that could potentially
enhance model accuracy. Future research should focus on
expanding the dataset and incorporating more comprehensive
feature sets, including anthropogenic factors, to refine the
predictive models further. Ultimately, our findings advocate
for the development of adaptable, season-specific wildfire
management strategies, potentially aiding policymakers and
emergency response teams in mitigating wildfire risks effec-
tively. This study lays the groundwork for future exploration
in the realm of precision forecasting, moving towards a more
proactive and targeted approach in wildfire management.
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